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I. Signals and Systems
Survival Kit

• Signals and systems (deterministic)
linear system
causal system
Z-transform and Fourier transform

• Signals and systems (random inputs)
basic probability concepts
correlation & covariance definition
statistical characterization of random signals

stationarity, wss, ergodicity, iid
white noise definition

statistical moments
correlation definition & properties for wss processes
how to compute correlation estimates

• Basic density functions and related properties
Gaussian, Q function, CLT
Rayleigh, Cauchy, Uniform, Chi-squared,
Non-central chi-squared
Monte Carlo performance
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Signals and Systems
Survival Kit

  I.  Signals and Systems  (deterministic review)

•  Definition:  a system is said to be causal if:

�  Linear system

�  Causal system

linear
systemx(t)

x(n) y(n) =

y(t) =
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�  Z-transform and Fourier transform
� �

� �T

Z x n

F x n

�� �� �

�� �� �

•  Definition:  a linear system is said to be causal if:
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�  Applications to linear systems:

� �

� �T

Z y n

F y n

�� �� �

�� �� �

�  Why are Z-transform and Fourier
      transforms useful?
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  II.  Signals and Systems  (random input review)

•  Distribution function (CDF)

�  Basic probability concepts

•  CDF Properties

–
–
–
–

•  Probability density function (pdf) fx(x) =

–
–
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�  (Cross) Correlation and covariance
function definitions

� �

� �
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� � �
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� �

� �
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� � �
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•  Random signals are characterized by joint
    distribution (or density) of samples

•  Fx(x1, x2, …, xk, n1,     nk)

= Pr [x(n1) � x1, … x(nk) � xk]

•  F(.) is highly complex to compute - difficult to
obtain in practice

�  Stationarity:
  Definition:  a RP is said to be stationary if any

joint density or distribution function
depends only on the spacing between
samples, not where in the sequence
the samples occur

  Example: fx(x1, x2, …, xN; n1, …, nN)

          = fx(x1, x2, …, xN; n1+k …, nN+k)

for any value of k

If  x(n) is stationary for all orders N = 1, 2, …

      x(n) is said to be strict-sense stationary.

�  Statistical Characterization of Random
Signals
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Example: Stationary up to order 2 � wide-sense stationary.

�  Wide-Sense Stationarity:

�  Definition:  a RS x(n) is called wide-sense
stationary (WSS) if

(1) the mean is a constant independent of “n”

(2)  the autocorrelation depends only on the distance
       � = n1 � n2 (i.e., x(n) is a seq. of uncorrelated RVs)

Consequence:  the variance is a constant independent of
“n”
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� Definition:  x[n] and y[n] are said to be w.s. jointly
     stationary if:

1) x[n] and y[n] are wss stationary

2) Rxy [n1, n0] = Rxy [n1 � n0]

�  When x[n] and y[n] are w.s.j stationary:

 Rxy [n1, n0] = Rxy [n1 � n0]  =

 Cxy [n1, n0] = Cxy [n1 � n0] =

� Properties:

Rxy(k)=

Cxy(k)=

�  Wide-Sense Stationarity (con’t):
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� Example
Let x(n) be a real valued process of independent
variables each with mean m and variance �2

x.
1) Compute: Rx(k,n) & Cx(k,n)
2) Let y(n) be defined as:

y(n)=x(n)+x(n-1)
     Compute: Ry(k,n) & Cy(k,n)
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�  in many applications only one realization of
      a RP is available

�  in general, one single member doesn’t provide
      information about the statistics of the process

�        except when process is stationary +ergodic:
      statistical information can be derived from one
      realization of RP

�  Def:  a RP is called ergodic if:

all ensemble averages = all corresponding time
averages

�  Ergodicity in the mean:

     Def:  a RP is said to be ergodic in the mean if:

�  Ergodicity in correlation:

     Def:  a RP is said to be ergodic in correlation if:

�Ergodicity:

�Signal (time) Average:

<x[n]>=
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�  Example: Independent, Identically Distributed
(I.I.D.) Random Process (RP):
    A Random Process is said to be:

    . an independent process if:
     fx(x1, x2,…,xk;n1,…,nk) = f1(x1;n1)…fk(x2;nk)

     . if all RVs have the same pdf f(x) => x(n) is called I.I.D.

Note: I.I.D. processes have no memory, where a future
value would depend on past values

•   Mean of I.I.D. Process:

mx(n) =
  Autocovariance:

Cx(n1, n2) =

  Autocorrelation:

Rx(n1, n2) =
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� RP Example: White noise

Definition: A random sequence w(n) is called 
a white noise process with mean mw and 
variance ��

w iff
E{w(n)}=mw
Rw(k)= ��

w(k)

Notes:
1) all frequencies contribute the same amount (as
in the case of white light, therefore the name of
“white noise”)

2) if the pdf of w(n) is Gaussian: it is called
“white Gaussian noise”



01/02/03 EC4570.WinterFY03/MPF
15

(1)  mean/average

      �  E{x} = mx = if x is discrete

                           =               if x is continuous

      �  important property of the mean  �  linearity!

            E{�x + �} =

            E{g(x)} =

(3)  moments

•
•
•  variance =

•  variance property:

    �  proof:  

� � � �m m
xr E x� �

� �( ) mm
x xE x m� � � �

2
x�

� �� �
222

x E x E x� � �� �
� �

•  pdf information summarized by key aspects
    called statistical averages or moments

�  Statistical moments
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�  Useful Moments:

          Skewness                Kurtosis

measures degree of        measures relative flatness or
asymmetry of distribution        peakedness of distribution
around the mean        about its mean

� �

3
3 x

x
x

x mk E
�

� �� ��� �
� �� 	
 �

� � �� �

� �

4
4 3x

x
x

x mk E
�

� �� ��� �
� �� 	
 �

� � �� �

Note:

for normal
distribution

� �4 0xk �
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�  (Cross) Correlation and covariance
function properties for wss processes

� �

� �
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� �

�

� �
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�  Correlation and covariance functions main
properties (for wss processes)



01/02/03 EC4570.WinterFY03/MPF
19

      Assume

•  For discrete data:  x=[x (0),              , x (N)]T

•  Quality of estimate? ��find mean and variance
    of

(1)

�
�

� x (t) known t = 0 � t = T0

x (t) ergodic (why?)

�R k tx �a f �

�R k tx �a f �
E R kx

� a f �

�  How to compute correlation estimates
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� �
� �

� � � � � �

2

2

ˆ(2)  Var

when

x
i

x x x

NR k
N k

R i R i k R i k

N k

�

���

� � �� � �

� �� � �� �

��

�
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~R k tx �a f �

� �xE R k T� �� �� �
�

Var ~R k T
N

R i R i k R i k

k

x

x x x

�a f
a f a f a f

�
�

� � �

�

��

�

�
1

1

0

2

Alternate Estimator:  Biased Estimator

Quality of estimate:

(1)

(2)
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� � � � � � � � � � � �

� � � � � � � �

� � � � � �
� �

� �

� � � �

� � � � � � � �
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1 ˆ
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N

NR k T R R k T R
N N k

k N
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� �

� �
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� � �

� �
� �� �� � � �� � � ��

� �� �� � � �� � � �� �

	

� �� � 	 
� � ��� � � �

� �� � � 	� � � ��
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    Biased Estimator        Unbiased Estimator

Biased/Unbiased estimator Summary
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�  Gaussian density � �2,x xx N m ��

  III.  Basic Density Functions and Related
          Properties

•  Real random variable

    fx(x) =

•  Complex random variable

    fx(x) =

•  Gaussian density property

fx(x)

x
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�  How to compute P(X > a) when X is
      Gaussian

•  P(X > a) =

•  Q-function

–  Q(y) =
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–    How to apply the Q-function ?
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Example:

The voltage X at the output of a noise
generator is assumed to be  N(0, 1)

Find P(X > 2)
(1 3)P X� �
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�Central Limit Theorem (CLT):

Describes the limiting behavior of the distribution 
function of a normalized sum of I.I.D. variables

Define: 

2

1
; [ ]; var[ ]

n
n

n

n i i i
i

s nmz
n

where s x m E x x

�

�

�

�

�

� � ��

As n gets large, zn ~ N(0,1)
As n gets large, sn  ~

2( , )N nm n�
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Example: Application of the CLT

Suppose orders at a restaurant are IID with a mean price
m=$8.00 and standard deviation      =$2.00.
Estimate the probability that the first 100 customers 
spend a total of more than $840.00

�
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�  Rayleigh density

•  fx(x) =

•  E [x] =

•

•  Applications:  Rayleigh densities are found in
    in communication applications when dealing
    with envelopes, etc...

Ex: � �

� �

2

2

0,

0,

x N

y N

�

�

�

�

2
x� �

� �,xyf x y �

x,y independent
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� �
� �2

1
1xf x

x�

�

�

�  Cauchy density

�6 �4 �2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T0 

1/2 � 1/� tan�1 (T0)
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�  Uniform density

•  fx(x) =

•  E [x] =

• 2
x� �



01/02/03 EC4570.WinterFY03/MPF
34

� �2
N��  Chi-squared density

� � � � � �
� �2 1

2

1 1exp ; 0
22 2

0; 0

N
NN N

x

x x x
Nf x

x

��

�
� � �

� �� ��
	
 � �

� ��

� � � �1

0
expaa t t dt

�
�

� � ��

N = number of degrees of freedom  N � 1)

�(a) = Gamma function defined as:

• Pdf found when 2 2

1

(0, )
N

i i
i

x x x N �

�

�� �
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•  Application:

–  Special case  N = 2, �2=1

� � � �
1 1exp ; 0

exponential pdf2 2
0; 0

x

x n
f x

n

� � �
� �� � �	 
 ��

� �
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�  Non-central �2 density

•  Generalization of           density
2
N�

•  Found for

� �2 2

1
; , iid

N

i i
i

x x x N A �

�

�� �

( 2) / 4 1/ 2

(( / 2) 1)2 2 2

2

1 ( )( ) exp ( );
2 2

N

x N
x x xf x I U x

A N

� �

� � � �

�

�

�

� ��� � � �
� �� 	 � 	 
 �

�  �  � �

�

• Complete description:

<---- Non centrality parameter
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�  Monte Carlo performance evaluation

•  Computer evaluation of a probability

•  Useful in cases where one cannot determine
    analytically or numerically expression of the
    form

P {x > K}

•  Can be found in detection problems where we
    may wish to evaluate probability that a given
    statistic exceeds a threshold

Example:

� � � �� � � � � �20 , , 1 ; 0, iidx x N x n N ��� �

–  Assume we have a data set

–  Assume we want to evaluate:

(1)  Analytical derivation

� �
1

0

1 N

n
P x n K

N

�

�

� �
�� �

� �
�
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(1)  Monte Carlo derivation

(a)  Generate data using

(b)  Compute

(c)  Repeat (b) M times to yield M realizations of T

(d)  Probability evaluation:

1.  Count the number of Ti’s that exceed K: Mk

2.  Estimate

� �
1

0

1 N

n
T x n

N

�

�

� �

� �1 2, , , MT T T�

� � kMP T K
M

� �

•  How to pick M ?

    if a relative error

    is desired 100 (1 – �) % of the time

    where  P = probability being estimated

true probability -- estimated probability
true probability

� �

� � � �
21

2

2 1Q P
M

P

�

�

�� ��
� ��    we need:
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  Example:  Determine  P {T > 1} with a relative error

             � = 0.01% for 95% of the time


